Tetrahedron 64 (2008) 10694-10698

Contents lists available at ScienceDirect

Tetrahedron

journal homepage: www.elsevier.com/locate/tet

Addition reactions of fluoroalkanesulfonyl azides to [60] fullerene under thermal or microwave irradiation condition

Ran Wu^a, Xiaoyong Lu^a, Yun Zhang^a, Jianmin Zhang^a, Wanting Xiong^b, Shizheng Zhu^{b,*}

^a Department of Chemistry, School of Science, Shanghai University, No. 99, Shangda Road, Shanghai 200444, China ^b Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Science, Shanghai 200032, China

ABSTRACT

ARTICLE INFO

Article history: Received 1 July 2008 Received in revised form 1 September 2008 Accepted 2 September 2008 Available online 17 September 2008

Keywords: [60] Fullerene Fluoroalkylsulfonyl azides Azafulleriod aziridino-fullerene Microwave irradiation

1. Introduction

The reactions of organic azides with [60] fullerene have paved the way for the synthesis of adducts with a variety of structure.¹⁻⁶ The first example of reaction was reported by Wudl et al.¹ Till now, it is well established that this reaction involved a [2+3] cycloaddition of azide to a double bond of the fullerene with formation of intermediate triazoline, followed by thermal cleavage of N₂ affording the opened [5,6]-bridged azafulleroid or closed [6,6]-bridged aziridino-fullerene depending on the nature of the substituent of the azide. Alternatively, nitrenes generated in situ by thermolysis or photolysis of azides add to fullerene in [1+2] cycloaddition yielding closed [6,6]-aziridino-fullerene derivatives.^{7–9} Recently, Mattay and Ulmer¹⁰ reported the preparation of sulfonylazafulleroid and aziridino-fullerene derivatives by thermal reactions of excess sulfonyl azides RSO₂N₃ (R: CH₃, C₆H₅CH₂, p-CH₃C₆H₄, p-MeOC₆H₅) with C₆₀.

To the best of our knowledge no addition reaction of fluoroalkanesulfonyl azides R_fSO₂N₃ 1 with C₆₀ are known. During our study on the fluoronated sulfonyl azides **1**, we found that they are readily reacted with many aromatic compounds and electron rich olefins such as silvlenol ether, acyclic or cyclic vinylether, enamines, etc.^{11–15}

* Corresponding authors.

0040-4020/\$ - see front matter © 2008 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2008.09.016

Fullerene C₆₀ was considered as electron-deficient compound,¹⁶ its reaction with 1 should be under more violent condition. As part of our continuing interest in the chemical transformation of fluoroalkanesulfonyl azides, we now report our preliminary investigation of the first reaction of C_{60} with fluorinated azides and discuss the possible reaction mechanism.

© 2008 Elsevier Ltd. All rights reserved.

2. Results and discussion

Thermal reaction of C_{60} (0.11 g, 0.14 mmol) with an equal molar azide ICF2CF2OCF2CF2SO2N3 1a was first carried out in

Table 1

Table 1		
Reaction of 1 a	with C ₆₀ under	different conditions

The reactions of [60] fullerene with excess fluoroalkanesulfonyl azides R_fSO₂N₃ in *o*-dichlorobenzene

under thermal or microwave irradiation condition afforded monoadduct opened [5,6]-bridged aza-

fulleroids. While, similarly treatment of 2,2,2-trifluoroethyl azides CF₃CH₂N₃ with C₆₀ gave two mono-

adducts, i.e., opened [5,6]-bridged azafulleroids, closed [6,6]-bridged Aziridino-fullerene, and some

multi-addition product. A general mechanism for these addition reactions was proposed.

Entry	Reaction of	Reaction conditions				
	Mol. ratio ^a	Solvent	Temp (°C)	Time (h)	2a (%)	
1	1	CB ^b	130	2	e	
2	4	CB	130	2.5	5 ^e	
3	11	CB	130	2.5	16 ^e	
4	4	o-DCB ^c	160	1.5	15	
5	11	o-DCB	160	2	26	
6	12	o-DCB	160	2	30	

^a Ratio of **1a**/C₆₀.

^b CB: chlorobenzene. ^c o-DCB: o-dichlorobenzene.

^d Isolated yield based on the reacted C₆₀, all reactions gave R_fSO₂NH₂ **3**.

^e Small amount of **4**.

E-mail address: zhusz@mail.sioc.ac.cn (S. Zhu).

Figure 1. ¹³C NMR of 2a, 5a, and 5b.

chlorobenzene (30 mL) after stirring the reaction mixture for 2 h at 130 °C, the reaction was finished, chromatography on silica gel gave unconverted C₆₀ first, more polar products obtained by using AcOEt/petroleum ether as elute were the corresponding fluoro-alkane-sulfonylamine ICF₂CF₂OCF₂CF₂SO₂NH₂ **3a** and small amount of ICF₂CF₂OCF₂CF₂SO₂NH–C₆H₄Cl **4**, which was identified with author's sample,¹⁵ no corresponding C₆₀ addition product was isolated and detected.

When the molar ratio of **1a** to C_{60} was increased from 1:1 to 4:1 and then to 11:1, the addition product **2a** was obtained and the yield was 5% and 16%, respectively (see Table 1, entries 1–3). The main product remained was the sulfonylamine **3a**. In order to increase the reaction temperature, *o*-dichlorobenzene (*o*-DCB) was used as solvent. Under higher temperature (160 °C) and excess azide (up to 12 equal molar ratio), the yield of **2a** was increased up to 30% (Table 1 entry 6), it was noticed that there is no corresponding *N*-fluoroalkanesulfonyl dichloroaniline $R_fSO_2NHC_6H_3Cl_2$ formed.

The structure of **2a** was identified by spectroscopic methods. The ¹³C NMR of **2a** shows 32 signals at 125.90–149.08 ppm (Fig. 1, ¹³C NMR of **2a**). In this spectrum, 28 signals have a relative intensity of 2 and the remaining 4 signals have the intensity of 1, the total integrated area for the aromatic region sums up to 60 carbon atoms.¹ Because all the fullerene carbons are in the sp² region the product **2a** is the opened [5,6]-bridged azafulleroid with the *C*_s-symmetry rather than the closed aziridine structure. The remaining very weak signals are all t–t patterns and attributed to the fluorocarbon atoms CF₂. Further evidence is obtained from the UV–vis spectrum, which is similar to pure *C*₆₀, the characteristic absorption for [6,6]-closed fullerene derivatives at 420 nm is not observed.^{17–19}

The ¹⁹F NMR spectrum of **2a** is very similar to the starting azide **1a** with a small downfield shift due to the electron-deficient influence of the carbon sphere.¹ TOF mass of the monoadduct **2a** shows a weak molecular ion peak M^- at m/z=1140.8.

Under the optimum reaction conditions (Table 1, entry 6) other fluoroalkanesulfonyl azides **1b** and **1c** added to C_{60} giving the monoadducts [5,6]-opened ring azafulleroid **2b** and **2c** in 25% and 18% yield, respectively (see Table 2).

When the reaction of **1** with C_{60} in *o*-DCB was conducted under microwave irradiation (700 W), the same product azafulleroids **2** and fluoroalkanesulfonyl amine **3** were isolated. The yields of **2a**, **2b**, and **2c** were 32%, 16%, and 21%, nearly the same as the thermal reactions, but the reaction time was shortened from 2 h to 20 min.

In contrast to the fluoroalkanesulfonyl azides 1(a-c), fourfold excess of 2,2,2-trifluoroethyl azide CF₃CH₂N₃ **1d** added to C₆₀ affording not only two monoadducts, *N*-trifluoroethyl azafulleroid **5a** and aziridino-fullerene **5b**, but the multi-addition products **5c**

Table 2
Reaction results of azides 2 with C_{60} under thermal or microwave irradiation

Entry	Reactant	Ratio ^a	Method ^b	Time	Products	Yield ^c (%)
1	1a	12	A	2 h	2a	30
2	1a	11	В	20 min	2a	32
3	1b	12	А	2 h	2b	25
4	1b	11	В	20 min	2b	16
5	1c	12	А	2 h	2c	18
6	1c	11	В	20 min	2c	21
7	1d	4	А	3 h	5a	48
					5b	16
					5c	5
					5c′	12
8	1d	4	В	20 min	5a	38
					5b	19

^a The molar ratio of azides to C₆₀.

^b Method A: heating in *o*-DCB at 160 °C for **1**(**a**-**c**) or 120 °C for **1d**; method B: irradiated under microwave (700 W).

^c Isolated yield based on the reacted C₆₀.

Figure 2. UV-vis spectrum of 2a, 5a, and 5b.

and **5c**' as well, it was also noted that in this reaction no corresponding $CF_3CH_2NH_2$ was formed. The ¹³C NMR spectrum of **5a** and **5b** shows the big difference (Fig. 1, ¹³C NMR of **5a** and **5b**). The spectrum of **5a** is similar to the azafulleroid **2a** exhibiting 32 signals at 133.66–147.52 ppm for the sp² carbons of the C_{60} skeleton, and two sp³ carbon atoms at 125.06 and 54.10 ppm for CF₃ and CH₂. While the spectrum of **5b** exhibits only 16 peaks at 140.9–145.2 ppm for the sp² carbons and one peak at 82.3 ppm for the sp³ hybridized carbons of C_{60} skeleton, other two peaks at 125.06 and 51.35 ppm are attributed to the two sp³ carbon atoms CF₃ and CH₂. This indicates for compound **5b** C_{2v} -symmetry with a [6,6] junction on the fullerene core. The UV–vis spectrum of **5b** exhibits the typical absorption for [6,6]-bridged dihydrofullerenes including the band at around 422 nm (Fig. 2).^{9,10}

When the reaction was carried out under microwave irradiation, however, only two monoadducts **5a** (38%) and **5b** (19%) were obtained, no multi-addition product was isolated.

All the above reaction results clearly show the difference between the fluorinated sulfonyl azides $R_fSO_2N_3$ **1**(**a**-**c**) with their hydrocarbon analogy RSO_2N_3 , while the fluoroalkylazide $CF_3CH_2N_3$ **1d**²⁰ behaves similar to alkyl or arylazide RN_3 . Fluoroalkylazide **1d** added to C_{60} by two pathways. One is the nitrene intermediate added to C_{60} in [1+2] cycloaddition yielding aziridine fullerene **5b**. The another way is the **1d** added to C_{60} by [3+2] cycloaddition to form a triazoline **[A]**, which underwent homogeneous cleavage of the N–N single bond giving a biradical intermediate **[B]**, two possible routes (paths a and b) will lead to **5a** and **5b** as investigated by Luh et al. (see Scheme 1).²¹

In the case of fluoroalkanesulfonyl azides 1(a-c) due to the strong electron withdrawing property of R_fSO₂ group, the nitrene intermediate RfSO2N did not add to the electron-deficient carboncarbon double bond of C₆₀, it transformed to the corresponding amine R_fSO₂NH₂ or R_fSO₂NHC₆H₄Cl (when the reaction was carried out in C_6H_5Cl) (see Scheme 2). On the other hand the [3+2] cycloaddition product N-fluoroalkane-sulfonyl triazoline [A'] should undergo N-N bond heterogeneous cleavage to give zwitterion intermediate $[\mathbf{B}']$, which is difficult to release N₂ to form a tertiary carbon cation by an S_N1 process, because both stereo and electron effects are unfavorable, so that it did not give aziridino-fullerene 2a'. Also the intermediate [B'] could not form 2a' by an $S_N 2$ process, which needed a back attacking on the C_1 by the nitrogen anion RN⁻. The only possible pathway is the attacking of the nitrogen anion occurred on the C_5 or C_6 (equivalent in the monoadduct 2) following the departure of N₂ leading to the adduct **[C]**, which then rearomatized to more stable product azafulleroid 2.

Scheme 2. Possible mechanism for the reaction of **1** with C60 (only relevant section of the fullerene is shown).

3. Conclusion

The reactions of fluoroalkanesulfonyl azides $R_fSO_2N_3$ **1**(**a**-**c**) with [60] fullerene were first investigated. In contrast to their hydrocarbon analogues $CH_3SO_2N_3$ and $C_6H_5CH_2SO_2N_3$, $R_fSO_2N_3$ added to C_{60} to give only [5,6]-azafulleroids with an open cluster structure. While their trifluoroethyl azide $CF_3CH_2N_3$ behaves similar to

the alkyl or aryl azides, it reacted with C_{60} affording two monoadducts [5,6]-azafulleroid and [6,6]-aziridino-fullerene, and multiaddition products in good yield. The present reactions afford a convenient method to synthesize a variety of stable fluorinated fullerene derivatives.

4. Experimental

4.1. General remarks

 C_{60} was purchased from Wuhan University and in 99% purity. All reactions were performed under nitrogen atmosphere, *o*-dichlorobenzene, chlorobenzene–carbon disulfide, toluene, and ethyl acetate were used in AR quality. Fluoroalkanesulfonyl azides $1(a-c)^{22}$ and trifluoroethyl azide $1d^{20}$ were prepared according to the literature procedure. ¹H, ¹³C, and ¹⁹F NMR spectra were recorded on Bruker AM-300 or AM-400 instrument with Me₄Si and CFCl₃ as the internal standards, respectively. FTIR spectra were obtained with a Nicolet AV-360 spectrophotometer. UV-vis spectra were performed with a UV-2501PC spectrophotometer. ES-MS spectra were performed on a Q-Tof micro-instrument and MALDI-MS spectra were performed on a Voyager-DE STR instrument.

4.2. Reaction of azide 1a with C₆₀ in o-DCB

A solution of C_{60} (0.11 g, 0.14 mmol) and **1a** (1.9 g, 1.68 mmol) in 30 mL of *o*-DCB was heated at 160 °C for 2 h and the solvent was then evaporated under reduced pressure. Chromatography on silica gel (cyclohexane/toluene/dioxane=6:1:0.2) gave unconverted C_{60} (21 mg) and **2a** (38 mg 30%); more polar product ICF₂CF₂OCF₂CF₂-SO₂NH₂ **3a** (0.9 g) was obtained by using petroleum ether/ethyl acetate (10:1) as eluent. After isolation, product **2a** was further purified by dissolving in CS₂, precipitating with *n*-pentane, centrifugation, and decanting to remove the pentane soluble components. It was finally dried under vacuum.

4.3. *N*-(5-Iodo-3-oxa-octafluoropentyl)sulfonyl aza[60]fulleroid 2a

FTIR (KBr): 1631, 1410, 1332, 1293, 1138, 1030, 909, 804, 708, 617, 526 cm⁻¹; ¹⁹F NMR (471 MHz, CS₂/CDCl₃=4:1): δ =-64.78 (t, 2F, ³J_{FF}=6.5 Hz, ICF₂), -80.95 (t, 2F, ³J_{FF}=13.5 Hz, OCF₂), -85.15 to

85.23 (m, 2F, CF₂O), -113.60 (s, 2F, SCF₂); ¹³C NMR (126 MHz, CS₂/ $CDCl_3=4:1$) $\delta=149.08, 147.23, 145.32, 145.01, 144.58, 144.54, 144.47,$ 144.45, 144.40, 144.35, 144.27, 144.02, 143.97, 143.83, 143.65, 143.49, 143.16, 143.06, 142.88, 142.01, 141.90, 140.56, 140.07, 139.76, 139.29, 138.89, 137.80, 135.91, 134.70, 134.65, 129.17, 125.90 (32C₆₀ sp² signals); UV-vis (CH₂Cl₂), λ_{max} (>225 nm, ϵ): 492 (150), 325 (121,910), 257 (361,390), 227 (283,570); ES-MS: m/z observed 1140.8 [M]⁻ (calcd 1140.85).

4.4. N-(3-Oxa-1,1,2,2,4,4,5,5-octafluoropentyl)-sulfonyl aza[60]fulleroid 2b

FTIR (KBr): 2921, 2852, 2638, 1540, 1410, 1326, 1283, 1177, 1139, 978, 621, 526 cm $^{-1};~^{1}\text{H}$ NMR (500 MHz, CS_/CDCl_3=4:1): $\delta{=}5.90$ (t, 1H, ${}^{2}J_{H,F}$ =52 Hz, HCF₂); ${}^{19}F$ NMR (471 MHz, CS₂/CDCl₃=4:1): $\delta = -80.65$ (t, 2F, ³ $J_{EF} = 12.2$ Hz, OCF₂), -88.08 to -88.14 (m, 2F, CF₂O), -113.68 (s, 2F, SCF₂), -137.01 (dt, 2F, ${}^{3}J_{EF}=4.7$ Hz, ${}^{2}J_{HF}=52$ Hz, HCF₂); ¹³C NMR (126 MHz, CS₂/CDCl₃=4:1): δ =149.03, 147.19, 145.27, 144.97, 144.53, 144.49, 144.43, 144.40, 144.35, 144.30, 144.22, 143.98, 143.93, 143.78, 143.60, 143.45, 143.12, 143.02, 142.84, 141.97, 141.85, 140.52, 140.02, 139.71, 139.25, 139.34, 138.85, 138.39, 138.37, 137.75, 135.87, 134.60 (32C₆₀ sp² signals); UV-vis (CH₂Cl₂), λ_{max} (>220 nm, ε): 529 (230), 325 (114,680), 258 (350,590), 228 (254,950); ES-MS: m/z observed 1014.9 [M]⁻ (calcd 1014.95).

4.5. N-Perfluorobutanesulfonyl aza[60]fulleroid 2c

FTIR (KBr): 2963, 2921, 1632, 1411, 1345, 1260, 1137, 1100, 1027, 802, 615, 526 cm⁻¹; ¹⁹F NMR (471 MHz, CS₂/CDCl₃=4:1): δ =-80.46 (t, 3F, ³*J_{F,F}*=9.0 Hz, CF₃), -109.90 (m, 2F, CF₂S), -120.43 (m, 2F, CF₂), -125.62 (m, 2F, CF₂); ¹³C NMR (126 MHz, CS₂/CDCl₃=4:1): $\delta = 148.96, 147.13, 145.21, 144.92, 144.47, 144.45, 144.43, 144.36,$ 144.34, 144.30, 144.23, 144.15, 143.92, 143.87, 143.54, 143.40, 143.13, 143.07, 142.97, 142.78, 141.92, 141.79, 140.46, 139.98, 139.68, 139.15, 138.80, 137.65, 135.81, 130.81, 129.71, 128.86 (32C₆₀ sp² signals); UV-vis (CH₂Cl₂), λ_{max} (>220 nm, ε): 501 (920), 492 (980), 326 (76,490), 258 (231,500), 228 (164,850), 224 (114,090); ES-MS: m/z observed 1016.9 [M]⁻ (calcd 1016.95).

4.6. N-1,1,1-Trifluoroethyl aza[60]fulleroid 5a

FTIR (KBr): 2919, 1633, 1506, 1427, 1309, 1265, 1177, 1154, 962, 729, 575, 525 cm⁻¹; ¹H NMR (500 MHz, CS₂/CDCl₃=4:1): δ =4.32 (q, 2H, ${}^{3}J_{HF}$ =8.5 Hz, CH₂); 13 C NMR (126 MHz, CS₂/CDCl₃=5:1): δ =147.52, 144.86, 144.70, 144.61, 144.45, 144.32, 144.25, 144.16, 143.89, 143.78, 143.69, 143.57, 143.50, 143.43, 143.25, 143.13, 143.02, 142.93, 142.77, 142.58, 141.45, 140.91, 140.03, 139.51, 138.57, 138.52, 137.98, 137.94, 136.32, 136.24, 135.66, 133.66 (32C₆₀ sp² signals), 125.06 (CF₃), 54.10 (q, ${}^{2}J_{CF}=33.2$ Hz, CH₂); ${}^{19}F$ NMR (471 MHz, CS₂/CDCl₃=4:1): $\delta = -70.63$ (t, ³J_{HF}=8.5 Hz, CF₃); UV-vis (CH₂Cl₂), λ_{max} (>220 nm, ε): 784 (170), 537 (1960), 405 (7530), 329 (89,360), 258 (303,140), 222 (212,840); MALDI-MS: *m*/*z* observed 817 [M]⁻ (calcd 817.01).

4.7. N-(1,1,1-Trifluoroethyl)aziridino[60]fullerene 5b

FTIR (KBr): 2964, 1713, 1632, 1498, 1387, 1261, 1149, 1096, 1023, 802, 572, 523 cm⁻¹; ¹H NMR (500 MHz, CS₂/CDCl₃=4:1): δ =4.32 (q, 2H, ³*J*_{HF}=8.0 Hz, CH₂); ¹³C NMR (126 MHz, CS₂/CDCl₃=5:1): $\delta = 145.16, 145.09, 144.79, 144.61, 144.44, 144.17, 144.08, 143.81,$ 143.68, 143.60, 143.49, 142.99, 142.73, 142.01, 141.98, 140.87 (16C₆₀ sp² signals), 82.31 (C₆₀ sp³ signals), 51.35 (q, ²*J_{CF}*=32.8 Hz, *C*H₂); ¹⁹F NMR (471 MHz, CS₂/CDCl₃=4:1): δ =-69.64 (t, 3F, ³J_{HF}=8.9 Hz, CF₃); UV-vis (CH₂Cl₂), λ_{max} (>220 nm, ε): 786 (100), 536 (690), 485 (620), 422 (1220), 404 (2620), 328 (41,640), 257 (153,110), 225 (95,900); MALDI-MS: *m*/*z* observed 817 [M]⁻ (calcd 817.01).

4.8. Bisiminofullerene 5c

FTIR (KBr): 2922, 2851, 1632, 1555, 1425, 1401, 1310, 1267, 1155, 1054, 1028, 963, 849, 659, 629, 523 cm $^{-1};\,^{1}\text{H}$ NMR (500 MHz, CS $_{2}/$ CDCl₃=4:1): δ=4.26 (q, 4H, ³J_{HF}=8.3 Hz, CH₂); ¹³C NMR (126 MHz, $CS_2/CDCl_3=5:1$): $\delta=147.32$, 146.47, 145.20, 145.06, 144.96, 144.81, 144.77, 144.51, 144.03, 143.38, 142.80, 142.77, 142.68, 143.66, 142.10, 141.49, 140.90, 140.67, 140.33, 140.07, 139.16, 138.65, 137.07, 136.66, 135.60,131.90,131.10,130.78 (28C₆₀ sp² signals), 81.69 (C₆₀ sp³ signals), 64.69 (CH₂); ¹⁹F NMR (471 MHz, CS₂/CDCl₃=4:1): δ =-70.07 (t, ³*J*_{HF}=8.0 Hz, CF₃); UV–vis (CH₂Cl₂), λ_{max} (>220 nm, ε): 772 (43), 536 (375), 330 (7315), 262 (21,666), 228 (20,253); MALDI-MS: m/z observed 915.3 [M+H]⁻ (calcd 914.03).

4.9. Trisiminofullerene 5c'

FTIR (KBr): 2963, 2923, 2853, 1723, 1634, 1461, 1380, 1262, 1097, 1022, 801, 701, 516 cm⁻¹; ¹H NMR (500 MHz, CS₂/CDCl₃=4:1): $\delta = 4.26 (q, 4H, {}^{3}J_{HF} = 8.3 Hz, CH_{2}), 4.36 (q, 2H, {}^{3}J_{HF} = 8.5 Hz, CH_{2}); {}^{13}C$ NMR(126 MHz, CS₂/C₆D₆=1:2): δ=148.58, 148.31, 146.66, 146.08, 145.58, 145.52, 145.16, 145.05, 144.93, 144.87, 144.61, 144.58, 144.53, 144.42, 144.28, 144.11, 143.42, 142.77, 142.45, 142.41, 141.98, 141.23, 140.54, 139.04, 137.86, 136.39,135.72, 135.46, 133.86 $(30C_{60}\ sp^2$ signals), 82.83 (C₆₀ sp³ signals), 65.99 (CH₂); ¹⁹F NMR (471 MHz, $CS_2/CDCl_3=4:1$): $\delta = -69.60$ (t, ${}^{3}J_{HF}=9.4$ Hz, CF_3), -70.58 (t, ${}^{3}J_{HF}=$ 8 Hz, CF₃); UV–vis (CH₂Cl₂), λ_{max} (>220 nm, ε): 536 (437), 484 (498), 322 (11,643), 257 (34,952), 227(34,071). ES-MS: *m*/*z* observed 1012 [M+H]⁻ (calcd 1011.05).

4.10. Reaction of 1a with C₆₀ under microwave irradiation condition

A solution of C₆₀ (0.11 g, 0.14 mmol), **1a** (1.76 g, 1.54 mmol), and o-DCB (20 mL in a 50 mL three necked flask) was irradiated under microwave (700 W) for 20 min under N₂ atmosphere. As the thermal reaction similar work-up gave 2a (41 mg 32%) and 3a (0.9 g), and 18 mg of unreacted C₆₀ was recovered.

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NNSFC) (Nos. 20772078 and 20532040).

References and notes

- 1. Prato, M.; Li, Q. C.; Wudl, F.; Lucchini, V. J. Am. Chem. Soc. 1993, 115, 1148-1150. Takeshita, M.; Suzuki, T.; Shinkai, S. J. Chem. Soc., Chem. Commun. 1994, 2587-2.
- 2588.
- 3. Hummeien, J. C.; Prato, M.; Wudl, F. J. Am. Chem. Soc. 1995, 117, 7003-7004.
- Yan, M.; Cai, S. X.; Keana, J. F. W. J. Org. Chem. 1994, 59, 5951-5954. 4. 5
- Averdung, J.; Wolff, C.; Mattay, J. Tetrahedron Lett. **1996**, 37, 4683–4684. Shen, C. K. F.; Chien, K. M.; Juo, C. G.; Her, G. R.; Luh, T. Y. J. Org. Chem. **1996**, 61, 6. 9242-9244.
- 7. Averdung, J.; Mattay, J. Tetrahedron 1996, 52, 5407-5420.
- Averdung, J.; Jorres-Garica, G.; Laftmann, H.; Schlachter, J.; Mattay, J. Fullerene 8. Sci Technol 1996 4 633-654
- 9. Averdung, J.; Mattay, J.; Jacovi, D.; Abraham, W. Tetrahedron 1995, 51, 2543–2552.
- 10. Ulmer, L.; Mattay, J. Eur. J. Org. Chem. 2003, 2933-2940.
- 11. He, P.; Zhu, S. Z. J. Fluorine Chem. 2004, 125, 1529-1536.
- 12. He, P.; Zhu, S. Z. Mini-Rev. Org. Chem. 2004, 1, 417-435.
- 13. Zhu, S. Z.; He, P. Tetrahedron 2005, 61, 5679-5685.
- 14. He, P.; Zhu, S. Z. J. Fluorine Chem. 2005, 126, 825-830.
- 15. He, P.; Zhu, S. Z. Tetrahedron 2006, 62, 549-555.
- 16. Reed, C. A.; Bolskar, R. D. Chem. Rev. 2000, 100, 1075-1120.
- 17. Pato, M.; Wudl, Q. F.; Lucchini, V.; Maggini, M.; Stimpfe, E.; Scorrane, G.; Suznki,
- J. J. Am. Chem. Soc. 1993, 115, 8479–8480. 18. Suzuki, T.; Li, Q.; Khemani, K. C.; Wudl, F. J. Am. Chem. Soc. 1992, 114, 7301-7302.
- 19. Isaacs, L.; Wehrsig, A.; Diederich, F. Helv. Chim. Acta 1993, 76, 1231-1250.
- 20. Wu, Y. M.; Deng, J.; Li, Y.; Chen, Q. Y. Synthesis 2005, 8, 1314-1318.
- 21. Shen, C. K. F.; Yu, H. H.; Juo, C. G.; Chien, K. M.; Her, G. R.; Luh, T. Y. Chem.-Eur J. 1997, 3, 744-748.
- 22. Zhu, S. Z. J. Chem. Soc., Perkin Trans. 1 1994, 2077-2081.